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SECTION A — (5 x 6 = 30 marks)
Answer ALL questions.
Let {A,},n= 1,2,...be" & nonincreasing

sequence of events and let A be their
product. Prove that P(A)=1lim P(4,).
n—a®

Or

Let {A},n=12,.., be a nondecreasing

sequence of events and let A be their
alternative. Prove that P(A)=lLmP(A,).

Prove that the expected value of the product
of an arbitrary finite number of independent
random variables, whose expected values

_exist, equals the product of the expected

values of these variables.

Or

Prove that the coefficient of correlation
catisfies the double inequality. —1< p = 1.
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Find the characteristic function and the
moments of normal distribution.

Or 6.

Find the density function of the random
variable X, whose characteristic function is

1—|t| for |f<1,
T
4(®) { 0 for ‘t|>1
Test whether the addition theorem is valid 8.
for random  variables with gamma
distributions.
Or

Obtain the characteristic function and it
moments of uniform distribution.

Let F,(x)=(n=12,..) be the distribution
function of the random variable X,. Prove
{X,}is stochastically

convergent to zero if and only if the sequence
{F,(x)} satisfies the relation.

that the sequence

0 for x<0,
1 for x>0.

Or

lim F, (x) =

[ Ll

State and prove De Moivre Laplace theorem.
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10.

SECTION B — (3 x 15 = 45 marks)
Answer any THREE questions.
State and prove Baye’s theorem.
If a random variable Y can take on only non-
negative values and has expected value E(Y).
Prove that for an arbitrary positive number X .

P(YzK)< E(Y).

Let F(x,y), E(x).Fg(y),m:,u),mz), and gy (u)

denote the distribution functions and the

characteristics functions of the random variables
(X,Y),X and y, respectively. Prove that the
random variable X and Y are then independent
if and only if the equation @(t,u)= ¢ (t)é(w) holds
for all real ¢ and u. .

Let the random variable X, have a binomial
distribution defined by the formula

PX,=r)=———p'A-p)"", where r takes

()‘

on the values 0,12,....n. the

If for n=12,...
relation pzi holds where A>0 is a constant,
- n

prove that lim P(X, = r) = £e #

n=ped

State and prove Levy — Cramer theorem. .
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